Joint stochastic-deterministic wiener filtering with recursive Bayesian estimation of deterministic speech

نویسندگان

  • Matthew McCallum
  • Bernard J. Guillemin
چکیده

Stochastic-deterministic (SD) speech modelling exploits the predictability of speech components that may be regarded deterministic. This has recently been employed in speech enhancement resulting in an improved recovery of deterministic speech components, although the improvement achieved is largely dependant on how these components are estimated. In this paper we propose a joint SD Wiener filtering scheme that exploits the predictability of sinusoidal components in speech. Estimation of sinusoidal speech components is approached in the recursive Bayesian context, where the linearity of the joint SD Wiener filter and Gaussian assumptions suggest a Kalman filtering scheme for the estimation of sinusoidal components. A further refinement also imposes a restriction of a smooth spectral envelope on sinusoidal magnitude estimates. The resulting joint SD Wiener filtering scheme improves speech quality in terms of the perceptual evaluation of speech quality (PESQ) metric when compared to both the traditional Wiener filter and the proposed Wiener filter based on alternative estimates of deterministic speech components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis

Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...

متن کامل

Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering

Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...

متن کامل

Capability of the Stochastic Seismic Inversion in Detecting the Thin Beds: a Case Study at One of the Persian Gulf Oilfields

The aim of seismic inversion is mapping all of the subsurface structures from seismic data. Due to the band-limited nature of the seismic data, it is difficult to find a unique solution for seismic inversion. Deterministic methods of seismic inversion are based on try and error techniques and provide a smooth map of elastic properties, while stochastic methods produce high-resolution maps of el...

متن کامل

Deterministic and Stochastic Bayesian Methods in Terrain Navigation

Terrain navigation is an application where inference be tween conceptually di erent sensors is performed re cursively on line In this work the Bayesian framework of statistical inference is applied to this recursive esti mation problem Three algorithms for approximative Bayesian estimation are evaluated in simulations one deterministic algorithm and two stochastic The deter ministic method solv...

متن کامل

APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES

We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013